Closing Wed: HW_4A, 4B, 4C (6.4, 6.5)

6.4 Work (continued)

Entry Task:

A cable with density 4 lbs/ft is being used to lift a 50 pound weight from the ground to the top of a 25 foot building. Find the total work done.

Step 1: Draw a picture.

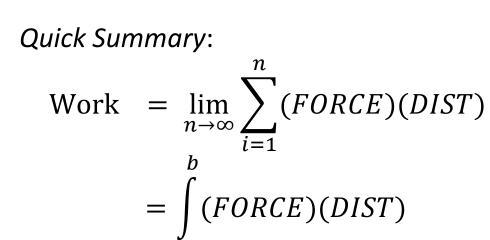
Step 2: Break up the problem:

- (a) Work to lift the 50 lbs weight?
- (b) Work to lift the cable?

Step 3: Add these together.

Example:

You are pumping water out of an aquarium. The aquarium is a rectangular box with a base of 2 ft by 3 ft and height of 10 ft. The density of water is 62.5 lbs/ft³. If the tank starts full, how much work is done in pumping all the water to the top and out over the side?



Problem type 1: (Leaky bucket/spring) Leaking at constant rate $\rightarrow f(x) = mx+b$ Spring (Hooke's Law) $\rightarrow f(x) = kx$ Force given $\rightarrow f(x) = force$

FORCE = $f(x_i)$, DISTANCE = Δx WORK = $\int_a^b f(x) dx$ Problem type 2: (Chain/pumping)
For all these,
FORCE = weight of a horizontal slice
DIST = distance moved by that slice

For chain:

k = density = force per distance FORCE = weight of slice = $k\Delta x$ DIST = distance moved by slice (typically x if you label like me) WORK = $\int_0^b x \, k \, dx$

For pumping: k = density = weight per volumeFORCE = k volume = k(hor. slice area) Δy DIST = distance moved by slice (typically *a-y* if you label like me) WORK = $\int_0^b (a - y)k(\text{slice area})dy$

Some unit facts:

g = grams, in = inches, yd = yards, mi = miles 1000 g = 1 kg100 cm = 1 meter12 inches = 1 foot3 feet = 1 yard5280 ft = 1 mile**Density of water** $= 1000 \text{ kg/m}^3 = 9800 \text{ N/m}^3$

 $= 62.5 \text{ lbs/ft}^{3}$

	Metric	Standard
Mass	kg	
Accel.	9.8 m/s ²	32 ft/s ²
Force	Newtons	pounds
	$N = kg \cdot m/s^2$	= lbs
Dist.	m = meters	ft = feet
Work	Joules	foot-pounds
	$J = N \cdot m$	ft·lbs

Review: Particular scenarios

Type 1 Problems:

1. HW 4A/1, 2, 8, 9 and HW 4B/1 Given force, just need to integrate!

Work =
$$\int_{a}^{b} f(x) dx$$

- 2. HW 4A/3, 4 (Springs)
 - (i) Covert all to meters
 - (ii) Label natural length, L, and note that L corresponds to x = 0.

Force = f(x) = kx
Work =
$$\int_{a}^{b} kx dx$$

ep 1: Find k

Step 1: Find k Step 2: Answer question. *Type 2 Problems*: FORCE = weight of a horizontal slice, DISTANCE = distance to top

- 3. HW 4A/5 and HW 4B/2 (Chain)
 - (i) k = density of chain = weight/dist
 - (ii) FORCE at a subdivision = $k\Delta x$
 - (iii) Label DIST to top.

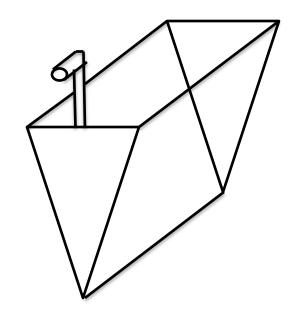
Work =
$$\int_{a}^{b} Dist \cdot kdx$$

- 4. HW 4A/6,7 and HW 4B/3 (Pumping) Water density = $9800 \text{ N/m}^3 = 62.5 \text{ lbs/ft}^3$
 - (i) Label (put in xy-plane)
 - (ii) Draw a horizontal slice and find a formula for its area.
 - (iii) FORCE = (Density)(Area) Δ y

(iv) DIST = distance to top
Work =
$$\int_{a}^{b}$$
 (Dist)(Density)(Area) dy

Example:

Consider the tank show at right. The height is 3 meters, the width at the top is 2 meters and the length is 6 meters. Also we are pumping the water up to 4 meters above the ground (1 meter above the top edge). If it starts full, how much work is done to pump it all out?



6.5 Average Value

The average value of the *n* numbers:

$$y_1, y_2, y_3, ..., y_n$$

is given by
 $\frac{y_1 + y_2 + y_3 + \dots + y_n}{n} = y_1 \frac{1}{n} + \dots + y_n \frac{1}{n}.$

Goal: We want the average value of all the y-values of some function y = f(x) over an interval x = a to x = b. Derivation:

1. Break into *n* equal subdivisions $\Delta x = \frac{b-a}{n}, \text{ which means } \frac{\Delta x}{b-a} = \frac{1}{n}$ 2. Compute *y*-value at each tick mark $y_1 = f(x_1), y_2 = f(x_2), \dots, y_n = f(x_n)$

3. Ave
$$\approx f(x_1) \frac{\Delta x}{b-a} + \dots + f(x_n) \frac{\Delta x}{b-a}$$

Average $\approx \frac{1}{b-a} \sum_{i=1}^n f(x_i) \Delta x$

4. Thus, we can define
Average =
$$\frac{1}{b-a} \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

5. Which means the exact average yvalue of y = f(x) over x = a to x = b is $f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

i=1